Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytomedicine ; 127: 155494, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38471370

RESUMEN

BACKGROUND: Parkinson's disease (PD), a neurodegenerative disorder, is characterized by motor symptoms due to the progressive loss of dopaminergic neurons in the substantia nigra (SN) and striatum (STR), alongside neuroinflammation. Asiaticoside (AS), a primary active component with anti-inflammatory and neuroprotective properties, is derived from Centella asiatica. However, the precise mechanisms through which AS influences PD associated with inflammation are not yet fully understood. PURPOSE: This study aimed to explore the protective mechanism of AS in PD. METHODS: Targets associated with AS and PD were identified from the Swiss Target Prediction, Similarity Ensemble Approach, PharmMapper, and GeneCards database. A protein-protein interaction (PPI) network was constructed to identify potential therapeutic targets. Concurrently, GO and KEGG analyses were performed to predict potential signaling pathways. To validate these mechanisms, the effects of AS on 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in mice were investigated. Furthermore, neuroinflammation and the activation of the NLRP3 inflammasome were assessed to confirm the anti-inflammatory properties of AS. In vitro experiments in BV2 cells were then performed to investigate the mechanisms of AS in PD. Moreover, CETSA, molecular docking, and molecular dynamics simulations (MDs) were performed for further validation. RESULTS: Network pharmacology analysis identified 17 potential targets affected by AS in PD. GO and KEGG analyses suggested the biological roles of these targets, demonstrating that AS interacts with 149 pathways in PD. Notably, the NOD-like receptor signaling pathway was identified as a key pathway mediating AS's effect on PD. In vivo studies demonstrated that AS alleviated motor dysfunction and reduced the loss of dopaminergic neurons in MPTP-induced PD mice. In vitro experiments demonstrated that AS substantially decreased IL-1ß release in BV2 cells, attributing this to the modulation of the NLRP3 signaling pathway. CETSA and molecular docking studies indicated that AS forms a stable complex with NLRP3. MDs suggested that ARG578 played an important role in the formation of the complex. CONCLUSION: In this study, we first predicted that the potential target and pathway of AS's effect on PD could be NLRP3 protein and NOD-like receptor signaling pathway by network pharmacology analysis. Further, we demonstrated that AS could alleviate symptoms of PD induced by MPTP through its interaction with the NLRP3 protein for the first time by in vivo and in vitro experiments. By binding to NLRP3, AS effectively inhibits the assembly and activation of the inflammasome. These findings suggest that AS is a promising inhibitor for PD driven by NLRP3 overactivation.


Asunto(s)
Intoxicación por MPTP , Fármacos Neuroprotectores , Enfermedad de Parkinson , Triterpenos , Ratones , Animales , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Intoxicación por MPTP/tratamiento farmacológico , Intoxicación por MPTP/metabolismo , Neuroprotección , Enfermedades Neuroinflamatorias , Simulación del Acoplamiento Molecular , Microglía , Enfermedad de Parkinson/metabolismo , Neuronas Dopaminérgicas , Antiinflamatorios/uso terapéutico , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
2.
Phytomedicine ; 127: 155474, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38471369

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD) is characterized by a chronic inflammation of the intestine, which significantly affects patients' quality of life. As a perennial plant with the homology of medicine and food, Panax ginseng is known for its substantial anti-inflammatory effects in various inflammatory disorders. Ginsenosides, the main bioactive compounds of P. ginseng, are recognized for their efficacy in ameliorating inflammation. PURPOSE: Over the past decade, approximately 150 studies have investigated the effects of P. ginseng and ginsenosides on IBD treatment and new issues have arisen. However, there has yet to be a comprehensive review assessing the potential roles of ginsenosides in IBD therapy. METHOD: This manuscript strictly adheres to the PRISMA guidelines, thereby guaranteeing systematic synthesis of data. The research articles referenced were sourced from major scientific databases, including Google Scholar, PubMed, and Web of Science. The search strategy employed keywords such as "ginsenoside", "IBD", "colitis", "UC", "inflammation", "gut microbiota", and "intestinal barrier". For image creation, Figdraw 2.0 was methodically employed. RESULTS: Treatment with various ginsenosides markedly alleviated clinical IBD symptoms. These compounds have been observed to restore intestinal epithelia, modulate cellular immunity, regulate gut microbiota, and suppress inflammatory signaling pathways. CONCLUSION: An increasing body of research supports the potential of ginsenosides in treating IBD. Ginsenosides have emerged as promising therapeutic agents for IBD, attributed to their remarkable efficacy, safety, and absence of side effects. Nevertheless, their limited bioavailability presents a substantial challenge. Thus, efforts to enhance the bioavailability of ginsenosides represent a crucial and promising direction for future IBD research.


Asunto(s)
Ginsenósidos , Enfermedades Inflamatorias del Intestino , Panax , Humanos , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Calidad de Vida , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Inflamación/tratamiento farmacológico
3.
Int J Biol Macromol ; 260(Pt 2): 129582, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246469

RESUMEN

Parvalbumin (PV) is a major allergen in fish, and traditional treatments cannot reduce its sensitization. The effects of dense-phase carbon dioxide (DPCD) treatment on the sensitization and spatial structure of PV in Trachinotus ovatus were evaluated in this study. Western blotting and indirect ELISA were used to determine the allergenicity changes and spatial conformations of PV treated by DPCD. Tris-tricine-SDS-PAGE, circular dichroism, surface hydrophobicity, endogenous fluorescence, UV spectrophotometry, free amino group, total sulfhydryl group and SEM analyses were applied to characterize PV structure. The results showed that DPCD treatment (15 MPa, 30 min, 50 °C) could reduce PV-induced allergic reactions by 39-41 %, which destroyed the normal conformational epitopes and reduced the risk of PV-induced allergy. The secondary structure changed from ordered to disordered with a decreased content of α-helical groups, while the internal hydrophobic groups were exposed. The total sulfhydryl group content decreased significantly (P < 0.05). The surface hydrophobicity and ultraviolet absorption spectrum were enhanced, and the endogenous fluorescence peak shifted to a long wavelength. Meanwhile, the content of free amino groups increased significantly (P < 0.05). This study could provide a theoretical basis and a promising technical approach for reduction of PV allergenicities.


Asunto(s)
Hipersensibilidad , Parvalbúminas , Animales , Parvalbúminas/química , Dióxido de Carbono/química , Alérgenos/química , Peces , Estructura Secundaria de Proteína
4.
Phytomedicine ; 123: 155167, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37952408

RESUMEN

BACKGROUND: Protopanaxatriol (PPT) is an important ginsenoside produced by ginseng, a tonic plant used in many areas. PPT has beneficial effects against many disease states including inflammation, diabetes, and cancer. However, PPT's protective effects on skin integrity have been rarely studied. Previously, we reported that PPT can maintain skin moisture through activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) pathways. However, the cellular targets for enhancing skin moisturizing effects via PPT are still unknown. PURPOSE: We wanted to identify the upstream targets of PPT on upregulating moisturizing factor (HAS-2) expression. STUDY DESIGN: We investigated which upstream proteins can be directly stimulated by PPT to modulate NF-κB, MAPKs and other signaling cascades. Then, the targeted proteins were overexpressed to check the relationship with HAS-2. Next, the cellular thermal shift assay (CETSA) was conducted to check the relationship between targeted proteins and PPT. METHODS: A human keratinocyte HaCaT were employed to measure the levels of moisturizing factors and the signaling proteins activated by PPT. Transfection conditions were established with DNA constructs expressing epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) and their mutants prepared by site-directed mutagenesis. Further investigation on molecular mechanisms was conducted by RT-PCR, luciferase reporter gene assay, CETSA, or Western blot. RESULTS: We found that PPT can activate the phosphorylation of EGFR and HER2. These stimulations caused Src phosphorylation, which resulted in the activation of phosphoinositide 3-kinases (PI3K)/pyruvate dehydrogenase kinase 1 (PDK1)/protein kinase B (AKT)/NF-κB and MAPKs signaling cascades. Additionally, EGFR and HER2 activation resulted in phosphorylation of signal transducer and activator of transcription 3 (STAT3) and calcium/calmodulin-dependent protein kinase II (CaMKII). This induced the AMP-activated protein kinase alpha (AMPKα) signaling pathway. Additionally, PPT blocked peroxisome proliferator activated receptor gamma (PPARγ), which also contributed to the phosphorylation of Src. CONCLUSION: Overall, we first found that PPT offers excellent protection of the skin barrier and hydrogen supply in keratinocytes. Moreover, growth factor receptors such as EGFR and HER2 were revealed to be central enzymes to be directly targeted by PPT. These results suggest a potentially valuable role as a cosmetic ingredient.


Asunto(s)
FN-kappa B , Sapogeninas , Humanos , FN-kappa B/metabolismo , Transducción de Señal , Sapogeninas/farmacología , Fosforilación , Queratinocitos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Receptores ErbB/metabolismo
5.
Phytomedicine ; 119: 155024, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37597364

RESUMEN

BACKGROUND: Piper nigrum essential oil (PnEO) possesses pleasant aroma, unique flavor, and various bioactivities; however, its role against colitis remains unclear. PURPOSE: In this study, we investigated the role of PnEO in relieving colitis and explored its potential mechanisms in a mouse model of dextran sulfate sodium (DSS)-induced colitis. METHODS: Initially, we identified and quantified the components of PnEO by gas chromatography-mass spectrometry (GC-MS). Subsequently, we investigated the protective role of PnEO (50 and 200 mg/kg) in DSS-induced colitis in mice by evaluating disease activity index (DAI) scores and colon length, and performing histological analyses. Eyeball blood was collected and cytokines were determined using ELISA kits. The anti-inflammatory mechanisms of PnEO were analyzed by western blot (WB) and immunohistochemistry (IHC). The intestinal barrier function was evaluated according to tight junction (TJ) protein mRNA levels. We used 16S rRNA gene sequencing to analyze the intestinal microflora of mouse cecal contents. RESULTS: Supplementation with PnEO (50 and 200 mg/kg) increased colon length and improved colon histopathology. PnEO regulated inflammatory responses by downregulating TLR4/MAPKs activation, thereby reducing the release of cytokines and mediators. Moreover, it also protected the intestinal barrier through enhancing the expression of claudin-1, claudin-3, occludin, ZO-1, and mucin 2. 16S rRNA gene sequencing revealed that PnEO (200 mg/kg) decreased the abundance of Akkermansia in the gut microbiome. CONCLUSION: PnEO treatment (50 and 200 mg/kg) relieved DSS-induced colitis by inhibiting TLR4/MAPK pathway and protecting intestinal barrier, and high-dose PnEO exhibited better effects. Moreover, PnEO (200 mg/kg) regulated key compositions of the gut microbiome, which indicated that it had therapeutic potential for sustaining gut health to lower the risk of colitis.


Asunto(s)
Colitis , Piper nigrum , Animales , Ratones , Sulfato de Dextran , ARN Ribosómico 16S , Receptor Toll-Like 4 , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Citocinas
6.
J Ginseng Res ; 2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37362082

RESUMEN

The COVID-19 pandemic has changed the world and has presented the scientific community with unprecedented challenges. Infection is associated with overproduction of proinflammatory cytokines secondary to hyperactivation of the innate immune response, inducing a cytokine storm and triggering multiorgan failure and significant morbidity/mortality. No specific treatment is yet available. For thousands of years, Panax notoginseng has been used to treat various infectious diseases. Experimental evidence of P. notoginseng utility in terms of alleviating the cytokine storm, especially the cascade, and improving post-COVID-19 symptoms, suggests that P. notoginseng may serve as a valuable adjunct treatment for COVID-19 infection.

7.
J Ginseng Res ; 47(3): 420-428, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37252284

RESUMEN

Background: Ginsenoside F2 (GF2), a minor component of Panax ginseng, has been reported to possess a wide variety of pharmacological activities. However, its effects on glucose metabolism have not yet been reported. Here, we investigated the underlying signaling pathways involved in its effects on hepatic glucose. Methods: HepG2 cells were used to establish insulin-resistant (IR) model and treated with GF2. Cell viability and glucose uptake-related genes were also examined by real-time PCR and immunoblots. Results: Cell viability assays showed that GF2 up to 50 µM did not affect normal and IR-HepG2 cell viability. GF2 reduced oxidative stress by inhibiting phosphorylation of the mitogen-activated protein kinases (MAPK) signaling components such as c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), and p38 MAPK, and reducing the nuclear translocation of NF-κB. Furthermore, GF2 activated PI3K/AKT signaling, upregulated the levels of glucose transporter 2 (GLUT-2) and GLUT-4 in IR-HepG2 cells, and promoted glucose absorption. At the same time, GF2 reduced phosphoenolpyruvate carboxykinase and glucose-6-phosphatase expression as well as inhibiting gluconeogenesis. Conclusion: Overall, GF2 improved glucose metabolism disorders by reducing cellular oxidative stress in IR-HepG2 cells via MAPK signaling, participating in the PI3K/AKT/GSK-3ß signaling pathway, promoting glycogen synthesis, and inhibiting gluconeogenesis.

8.
Fitoterapia ; 168: 105541, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37178809

RESUMEN

Three undescribed dammarane-type triterpene saponins, 20(S)-sanchirhinoside A7-A9 (1-3), together with seventeen known ones, were isolated from the roots of Panax notoginseng (Burk.) F. H. Chen. The chemical structures of the new compounds were determined by HR-MS and NMR experiments along with chemical methods. To the best of our knowledge, compound 1 was the firstly reported fucose-containing triterpene saponin from plants in the genus of Panax. Moreover, the in vitro neuroprotective effects of the isolated compounds were evaluated. Compounds 11-12 displayed remarkable protective effects against PC12 cells injured by 6-hydroxydopamine.


Asunto(s)
Fármacos Neuroprotectores , Panax notoginseng , Panax , Saponinas , Triterpenos , Ratas , Animales , Saponinas/farmacología , Saponinas/química , Panax notoginseng/química , Fármacos Neuroprotectores/farmacología , Estructura Molecular , Triterpenos/farmacología , Triterpenos/química , Panax/química , Damaranos
9.
Molecules ; 28(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37049911

RESUMEN

Penazaphilones J-L (1-3), three new hydrophilic azaphilone pigments, as well as six known compounds, were discovered from the filamentous fungus Penicillium sclerotiorum cib-411. Compounds 1-3 were structurally elucidated by the detailed interpretation of their 1D and 2D NMR spectroscopic data. Compound 1 is an unprecedented hybrid of an azaphilone and a glycerophosphate choline. Compounds 2 and 3 each contain an intact amino acid moiety. The bioassay showed that compound 3 exhibited significant anti-inflammatory activity. Concretely, compound 3 significantly suppressed the NO production, the expression levels of COX-2, IL-6, IL-1ß, and iNOS mRNA in LPS-stimulated RAW264.7 cells. Moreover, treatment of compound 3 prevented the translocation of NF-κB through inhibiting the phosphorylation of PI3K, PDK1, Akt, and GSK-3ß. Thus, the inhibition of compound 3 against LPS-induced inflammation should rely on its inactivation on NF-κB.


Asunto(s)
Lipopolisacáridos , FN-kappa B , Animales , Ratones , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Glucógeno Sintasa Quinasa 3 beta , Antiinflamatorios/química , Inflamación/tratamiento farmacológico , Células RAW 264.7
10.
Int J Pharm ; 635: 122703, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36758880

RESUMEN

Cancer immunity is dependent on dynamic interactions between T cells and dendritic cells (DCs). Polymer-based nanoparticles target DC receptors to improve anticancer immune responses. In this paper, DC surface receptors and their specific coupling natural ligands and antibodies are reviewed and compared. Moreover, reaction mechanisms are described, and the synergistic effects of immune adjuvants are demonstrated. Also, extracellular-targeting antigen-delivery strategies and intracellular stimulus responses are reviewed to promote the rational design of polymer delivery systems.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Células Dendríticas , Polímeros , Neoplasias/tratamiento farmacológico , Inmunoterapia
11.
Phytochemistry ; 208: 113589, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36669693

RESUMEN

The fragrant flowers of Rosa hugonis Hemsl. Contain abundant valuable rose oil and carotenoids. However, phytochemical investigation of this resource rich in phenolics with neuroprotective activity in vitro has been rarely reported. Purification of the 70% ethanol extracts from the flowers of R. hugonis by various chromatographic methods resulted in the isolation and characterization of five undescribed acylated flavonoid glycosides (Hugonisflavonoid A-E) together with forty known phenolics. The chemical structures of the undescribed compounds were elucidated by extensive analysis of their spectroscopic data and chemical methods. All the isolates were found from R. hugonis for the first time and evaluated for their neuroprotective effects on 6-OHDA induced injury in PC12 cells. Seventeen compounds displayed remarkable protective effects at concentrations of 10 µM. Hugonisflavonoid E can reduce excessive reactive oxygen species and up-regulate mRNA expression levels of superoxide dismutase 1 and catalase. Additionally, hugonisflavonoid E activated the phosphorylated proteins such as PDK1, Akt and GSk-3ß. These findings suggested that R. hugonis could be a potential source for neuroprotective agents.


Asunto(s)
Fármacos Neuroprotectores , Rosa , Ratas , Animales , Antioxidantes/farmacología , Rosa/química , Glucógeno Sintasa Quinasa 3 beta , Flores/química , Extractos Vegetales/química
12.
J Ethnopharmacol ; 302(Pt A): 115865, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36306932

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Centella asiatica (L.) Urb., a potential medicinal plant, is widely used in orient traditional medicine. Its major active constituents include asiaticoside (AS), madecassoside (MS), asiatic acid and madecassic acid. Thereinto, AS is a pentacyclic triterpenoid saponin with a variety of pharmacological effects including antitumor, neuroprotective and wound healing effects. AIM OF THE STUDY: In this review, we summarize the pharmacokinetics, safety and pharmacological properties of AS. MATERIALS AND METHODS: We gathered information about AS from articles published up to 2022 and listed in Google scholar, PubMed, Web of Science, Elsevier, and similar databases. The keywords used in our search included "asiaticoside", "Centella asiatica", "pharmacokinetics", "nerve", "cancer", "skin", etc. RESULTS: AS appeared to degrade through a first-order reaction and had low biotoxicity. However, the pharmacokinetic properties of AS differed according to species. AS is highly blood-brain-barrier permeable without any harmful side effect. It has a variety of pharmacological effects including anti-neural inflammation and anti-cancer properties, as well as protective properties for the skin, cardiovascular system, and pulmonary system. CONCLUSION: This review comprehensively summarized current information regarding the pharmacokinetic and pharmacological properties of AS, and supported the pharmaceutical value of this compound. Future research should focus on improving bioavailability of AS and conducting clinical assessment.


Asunto(s)
Centella , Triterpenos , Extractos Vegetales/farmacología , Triterpenos/farmacología
13.
Am J Chin Med ; 51(1): 205-221, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36408728

RESUMEN

20(S)-protopanaxadiol (PPD), a metabolite of Panax ginseng, has multiple pharmacological properties. However, the effects of PPD against human gastric cancer have not been elucidated. Our purpose in this study was to investigate if PPD has anticancer effects against human gastric cancer in vitro. Cell viability, migration, clone formation, and invasion were assessed to explore the effects of PPD on cancer cells. PI and annexin V staining as well as immunoblotting were employed to determine if PPD-induced apoptosis and autophagy of MKN1 and MKN45 cells. The target of PPD was identified using immunoblotting, overexpression analysis, and flow cytometric analysis. PPD exhibited significantly suppressed cell viability, migration, colony formation, and invasion. Phosphorylation of Src and its down-stream effectors were inhibited by PPD. PPD-enhanced apoptosis and autophagy in a dose- and time-dependent manner by inhibiting Src. Collectively, our results demonstrate that PPD induces apoptosis and autophagy in gastric cancer cells in vitro by inhibiting Src.


Asunto(s)
Ginsenósidos , Panax , Sapogeninas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Apoptosis , Sapogeninas/farmacología , Autofagia , Ginsenósidos/farmacología , Línea Celular Tumoral
14.
Molecules ; 27(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36296474

RESUMEN

Although the fruit of Ficus tikoua Bur. has been consumed by montanic people in China for centuries, its chemical and biological composition was still unclear. A series of comprehensive investigations on its chemical constituents and bioactivities were carried out for the first time. As a result, six compounds were isolated and identified as the main components in this fruit. GC-MS analysis of the lipid components demonstrated that Ficus tikoua Bur. fruit contains some wholesome constituents such as fatty acids, vitamins, triterpenoids, and phytosterols. The fatty acids are mainly composed of linolenic acid (61.27%) and linoleic acid (22.79%). Furthermore, this fruit contains a relative high content of crude protein (9.41 ± 0.03%), total amino acids (9.28%), and total polyphenols (0.86 ± 0.01 g/100 g). The analysis of monosaccharide composition showed that the total polysaccharide mainly consists of glucose, glucuronic acid, xylose, arabinose, mannose, galactose, galacturonic acid, and rhamnose. The polysaccharide, polyphenol, water, ethanol, and flavonoid extracts exhibited prominent antioxidant activity determined by ABTS, DPPH, and FRAPS methods. Meanwhile, the total polysaccharide exhibited significant immunomodulatory effect by enhancing the release of cytokines and expression of iNOS and COX-2 in RAW264.7 cells, significantly decreasing the expression of c-Jun and p65 proteins in the cytoplasm; increasing the translocation of c-Jun and p65 to the nucleus; and regulating the phosphorylation level of Akt, PI3K, and PDK1 in the PI3K/AKT signaling pathway. This study proved that the fruit of F. tikoua is a reliable source of functional food.


Asunto(s)
Ficus , Fitosteroles , Triterpenos , Humanos , Ficus/química , Antioxidantes/química , Frutas/química , Polifenoles/farmacología , Polifenoles/análisis , Ciclooxigenasa 2 , Galactosa/análisis , Manosa/análisis , Arabinosa/análisis , Ramnosa/análisis , Xilosa/análisis , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Polisacáridos/química , Flavonoides/análisis , Monosacáridos/análisis , Citocinas/análisis , Agua/análisis , Lípidos/análisis , Vitaminas/análisis , Triterpenos/análisis , Fitosteroles/análisis , Glucosa/análisis , Etanol/análisis , Aminoácidos/análisis , Glucuronatos , Ácidos Linolénicos , Ácidos Linoleicos/análisis
15.
Front Nutr ; 9: 998840, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118756

RESUMEN

In this study, the yield, content of piperine, and antioxidant activity of pepper oleoresin obtained with the methods of maceration, ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), and ultrasound-MAE (UMAE) were analyzed, and the microstructure of pepper residue was observed. For the yield and piperine content, the UMAE method had the best extraction capacity among the four methods. While, the oleoresin obtained with maceration had the highest total phenolic content, and the antioxidant activity of the oleoresin obtained by maceration was higher than that of the extracts acquired by UAE, MAE, and UMAE, and a high positive correlation was observed between the antioxidant activity and total phenolic content of the oleoresin obtained by these extraction methods. The ideal parameters for UMAE were an 80-mesh particle size and a 1 g/10 mL solid-liquid ratio. The kinetic parameters and models of the UMAE extraction process were also compared using first- and second-order models. The second-order kinetic equation with the lowest root mean square deviation and highest adjusted correlation coefficient proved to be more suitable for describing the extraction kinetics of pepper oleoresin. This study showed that UMAE is a fast, efficient, and cost-effective technique for the extraction of green pepper oleoresin.

16.
Comput Intell Neurosci ; 2022: 6420799, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35755732

RESUMEN

Nowadays, the problem of road traffic safety cannot be ignored. Almost all major cities have problems such as poor traffic environment and low road efficiency. Large-scale and long-term traffic congestion occurs almost every day. Transportation has developed rapidly, and more and more advanced means of transportation have emerged. However, automobile is one of the main means of transportation for people to travel. In the world, there are serious traffic jams in almost all cities. The excessive traffic flow every day leads to the paralysis of the urban transportation system, which brings great inconvenience and impact to people's travel. Various countries have also actively taken corresponding measures, i.e., traffic diversion, number restriction, or expanding the scale of the road network, but these measures can bring little effect. Traditional intelligent traffic flow forecasting has some problems, such as low accuracy and delay. Aiming at this problem, this paper uses the model of the combination of Internet of Things and big data to apply and analyze its social benefits in intelligent traffic flow forecasting and analyzes its three-tier network architecture model, namely, perception layer, network layer, and application layer. Research and analyze the mode of combining cloud computing and edge computing. From the multiperspective linear discriminant analysis algorithm of the combination method of combining the same points and differences between data and data into multiple atomic services, intelligent traffic flow prediction based on the combination of Internet of Things and big data is performed. Through the monitoring and extraction of relevant traffic flow data, data analysis, processing and storage, and visual display, improve the accuracy and effectiveness and make it easier to improve the prediction accuracy of overall traffic flow. The traffic flow prediction of the system of Internet of Things and big data is given through the case experiment. The method proposed in this paper can be applied in intelligent transportation services and can predict the stability of transportation and traffic flow in real time so as to optimize traffic congestion, reduce manual intervention, and achieve the goal of intelligent traffic management.


Asunto(s)
Macrodatos , Internet de las Cosas , Automóviles , Ciudades , Humanos , Transportes
17.
Food Res Int ; 155: 111074, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35400452

RESUMEN

Lotus root polysaccharide (LRP) is an active water-soluble polysaccharide with average molecular weight of 1.24 × 104. It was composed of (1 â†’ 4)-α-D-glucan backbone with α-D-glycopyranosyl moieties connected to C-6 positions of the glucose residues as side chains approximately every six residues. However, little information is available for its digestion and fermentation characteristics in vitro. The results showed that the levels of reducing sugars were increased slightly, and the molecular weight was also reduced slightly, in simulated gastric and small intestinal juices. During in vitro fermentation, the total sugar, reducing sugar and glucose contents decreased gradually with increasing fermentation time. The molecular of LRP was degraded and to metabolize into a variety the short-chain fatty acids (SCFAs) such as acetic, propionic, and butyric acids. Furthermore, LRP fermentation decreased the pH of the fermentation broth and increased its absorbance. Meanwhile, LRP modulated the gut microbiota by altering the Firmicutes/Bacteroidetes ratio and increasing the relative abundance of Bifidobacterium. The findings from this study showed that LRP could be developed as potential prebiotic to regulate the composition of gut microbiota, thereby promote the production of SCFAs.


Asunto(s)
Microbioma Gastrointestinal , Nelumbo , Carbohidratos de la Dieta , Digestión , Ácidos Grasos Volátiles/metabolismo , Fermentación , Glucosa , Humanos , Nelumbo/metabolismo , Polisacáridos/química , Azúcares
18.
Plant Foods Hum Nutr ; 77(1): 150-154, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35292935

RESUMEN

Red dragon fruit peel, as a fruit waste, is rich in plant-based nutritional pectins that can be applied as food additives. The present study aims to characterize a novel phosphorylated red dragon fruit peel pectin (PRDFP-P) and to explore its functional activities. The thermal analysis, morphology analysis, antibacterial, antioxidant and antitumor activities of PRDFP-P were evaluated. The results showed that the phosphorylated derivative PRDFP-P had typical phosphate groups. Compared with the native red dragon fruit peel pectin (PRDFP), PRDFP-P possessed superior thermal stability and exhibited significant inhibition effects on Escherichia coli and Staphylococcus aureus. Moreover, the phosphate groups on the derivative PRDFP-P chains remarkably enhanced the scavenging ability of hydroxyl radicals and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals. In addition, PRDFP-P showed a significant inhibition effect on growth of human hepatic carcinoma cells (HepG2) and the IC50 value was determined to be 248.69 µg/mL (P < 0.05). Our results suggested that the phosphorylated derivative PRDFP-P might be potentially applied as stabilizing, thickening and gelling agents with functional activities in the food industry.


Asunto(s)
Cactaceae , Pectinas , Antioxidantes/análisis , Cactaceae/química , Frutas/química , Pectinas/análisis , Pectinas/farmacología , Fosfatos/análisis , Extractos Vegetales/química
19.
J Ginseng Res ; 46(1): 23-32, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35058724

RESUMEN

Panax polysaccharides are biopolymers that are isolated and purified from the roots, stems, leaves, flowers, and fruits of Panax L. plants, which have attracted considerable attention because of their immunomodulatory activities. In this paper, the composition and structural characteristics of purified polysaccharides are reviewed. Moreover, the immunomodulatory activities of polysaccharides are described both in vivo and in vitro. In vitro, Panax polysaccharides exert immunomodulatory functions mainly by activating macrophages, dendritic cells, and the complement system. In vivo, Panax polysaccharides can increase the immune organ indices and stimulate lymphocytes. In addition, this paper also discusses the membrane receptors and various signalling pathways of immune cells. Panax polysaccharides have many beneficial therapeutic effects, including enhancing or activating the immune response, and may be helpful in treating cancer, sepsis, osteoporosis, and other conditions. Panax polysaccharides have the potential for use in the development of novel therapeutic agents or adjuvants with beneficial immunomodulatory properties.

20.
J Food Biochem ; 46(1): e14008, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34811774

RESUMEN

In this study, the structure and pro-inflammatory activities of water-soluble wheat bran polysaccharides (WBP) were evaluated. WBP were heteropolysaccharides consisting 60.34% arabinoxylan as the main component and 31.80% mannose residues characterized with the instrumental analyses. The result of cellular experiment displayed that WBP had significant pro-inflammatory activities by increasing the concentration of nitric oxide (NO) and up-regulating the inflammatory cytokine expressions of inducible nitric oxide synthase (iNOS), interleukin-1ß (IL-1ß), cyclooxygenase-2 (COX-2), and tumor necrosis factor-α (TNF-α). WBP mediated macrophages RAW 264.7 pro-inflammatory response through phosphatidylinositol 3 hydroxykinase/protein kinase B (PI3K/Akt) signaling pathway by significantly promoting Akt and phosphoinositide-dependent kinase 1 (PDK1) phosphorylations. Meanwhile, the expression of related phosphorylated proteins JNK and ERK1/2 was significantly up-regulated which suggested that WBP played pro-inflammatory roles by activating mitogen-activated protein kinases (MAPKs) signaling pathway. PRACTICAL APPLICATIONS: In recent years, wheat bran generally has the phenomenon of high yield and low utilization rate. Wheat bran has rich nutritional value and contains a lot of effective biologically active substances. Based on our findings, the water-soluble polysaccharides extracted from wheat bran have significant effects on regulating immunity and can be utilized as sources of natural immune modulators. The research can develop new functions of wheat bran polysaccharides, and improve processing utilization rate and product added value.


Asunto(s)
Lipopolisacáridos , FN-kappa B , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Polisacáridos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...